1,984 research outputs found

    Entropic Bell inequalities

    Get PDF
    We derive entropic Bell inequalities from considering entropy Venn diagrams. These entropic inequalities, akin to the Braunstein-Caves inequalities, are violated for a quantum-mechanical Einstein-Podolsky-Rosen pair, which implies that the conditional entropies of Bell variables must be negative in this case. This suggests that the satisfaction of entropic Bell inequalities is equivalent to the non-negativity of conditional entropies as a necessary condition for separability

    On the von Neumann capacity of noisy quantum channels

    Full text link
    We discuss the capacity of quantum channels for information transmission and storage. Quantum channels have dual uses: they can be used to transmit known quantum states which code for classical information, and they can be used in a purely quantum manner, for transmitting or storing quantum entanglement. We propose here a definition of the von Neumann capacity of quantum channels, which is a quantum mechanical extension of the Shannon capacity and reverts to it in the classical limit. As such, the von Neumann capacity assumes the role of a classical or quantum capacity depending on the usage of the channel. In analogy to the classical construction, this capacity is defined as the maximum von Neumann mutual entropy processed by the channel, a measure which reduces to the capacity for classical information transmission through quantum channels (the "Kholevo capacity") when known quantum states are sent. The quantum mutual entropy fulfills all basic requirements for a measure of information, and observes quantum data-processing inequalities. We also derive a quantum Fano inequality relating the quantum loss of the channel to the fidelity of the quantum code. The quantities introduced are calculated explicitly for the quantum "depolarizing" channel. The von Neumann capacity is interpreted within the context of superdense coding, and an "extended" Hamming bound is derived that is consistent with that capacity.Comment: 15 pages RevTeX with psfig, 13 figures. Revised interpretation of capacity, added section, changed titl

    Prolegomena to a non-equilibrium quantum statistical mechanics

    Full text link
    We suggest that the framework of quantum information theory, which has been developing rapidly in recent years due to intense activity in quantum computation and quantum communication, is a reasonable starting point to study non-equilibrium quantum statistical phenomena. As an application, we discuss the non-equilibrium quantum thermodynamics of black hole formation and evaporation.Comment: 20 pages, LaTeX with elsart.cls, 8 postscript figures. Special issue on quantum computation of Chaos, Solitons, and Fractal

    Tipstreaming of a drop in simple shear flow in the presence of surfactant

    Full text link
    We have developed a multi-phase SPH method to simulate arbitrary interfaces containing surface active agents (surfactants) that locally change the properties of the interface, such the surface tension coefficient. Our method incorporates the effects of surface diffusion, transport of surfactant from/to the bulk phase to/from the interface and diffusion in the bulk phase. Neglecting transport mechanisms, we use this method to study the impact of insoluble surfactants on drop deformation and breakup in simple shear flow and present the results in a fluid dynamics video.Comment: Two videos are included for the Gallery of Fluid Motion of the APS DFD Meeting 201

    Reduction criterion for separability

    Get PDF
    We introduce a separability criterion based on the positive map Γ:ρ→(Tr ρ)-ρ, where ρ is a trace-class Hermitian operator. Any separable state is mapped by the tensor product of Γ and the identity into a non-negative operator, which provides a simple necessary condition for separability. This condition is generally not sufficient because it is vulnerable to the dilution of entanglement. In the special case where one subsystem is a quantum bit, Γ reduces to time reversal, so that this separability condition is equivalent to partial transposition. It is therefore also sufficient for 2×2 and 2×3 systems. Finally, a simple connection between this map for two qubits and complex conjugation in the “magic” basis [Phys. Rev. Lett. 78, 5022 (1997)] is displayed
    corecore